[পর্ব ২৪]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আবু কামিল:-এলজাব্রায় প্রথম উচ্চতর পাওয়ার ব্যবহারকারী]


আসসালামু আলাইকুম

আশা করছি আপনারা সবাই আল্লাহর রহমতে ভালো আছেন।

আমার আগের সব পর্ব:-

ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।পর্ব ১

ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।পর্ব ২

ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।পর্ব ৩

ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।পর্ব ৪

ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।পর্ব ৫

ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।পর্ব ৬

[পর্ব ৭] ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[নাসির আল দীন আল তুসি:-ত্রিকোণমিতির স্রষ্টা,জিজ-ইলখানি উপাত্তের উদ্ভাবক]

[পর্ব ৮] ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আবুল ওয়াফা:-ত্রিকোণমিতির মূল স্থপতি]

[পর্ব ৯]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আবু মারওয়ান/ইবনে জহুর:-পরভূক জীবাণু বিজ্ঞানের প্রতিষ্ঠাতা,পরীক্ষামূলক সার্জারির জনক, পরীক্ষামূলক শারীরবৃত্তীয়, মানুষের ব্যবচ্ছেদ, অটোপস এর অগ্রদূত]

[পর্ব ১০]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আল মাওয়ার্দি:-বিশুদ্ধতম গণতন্ত্রের প্রবক্তা]

[পর্ব ১১]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আল জাজারি:-মধ্যযুগের শ্রেষ্ঠ প্রযুক্তিবিদ]

[পর্ব১২]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আবুল কাসিম আল জাহারাবী:-অপারেটিভ/আধুনিক সার্জারীর জনক]

[পর্ব১৩]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আব্বাস ইবনে ফিরনাস:-বিমানের জনক,প্রথম যিনি উড়েছিলেন আকাশে]

[পর্ব ১৪]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আল-কিন্দি:-ফার্মাকোলজির অগ্রদূত, পেরিপ্যাটেটিক দর্শনের জনক,সাংকেতিক বার্তার পাঠোদ্ধারকারী,সাইকোথেরাপি ও সংগীত থেরাপির অগ্রদূত]

[পর্ব ১৫]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[ফাতিমা আল ফিহরি:-বিশ্বের প্রথম বিশ্ববিদ্যালয় প্রতিষ্ঠা করেছিলেন যে নারী]

[পর্ব ১৬]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আল-খৈয়াম:-বাইনমিয়েল থিওরেমের প্রথম আবিষ্কারক,এনালিটিক্যাল জ্যামিতির জনক]

পর্ব ১৭]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[জাকারিয়া আল রাযি:-আরবীয় চিকিৎসাশাস্ত্রের প্রাণপুরুষ]

[পর্ব ১৮]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আল ফারাবি:-অ্যারিস্টটলের পর দর্শনের সেকেন্ড মাস্টার,পদার্থ বিজ্ঞানে শূন্যের অবস্থান নির্ণয়কারী]

[পর্ব ১৯]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আল জারকালি:-সূর্যের সর্বোচ্চ উচ্চতার গতি প্রমাণকারী]

[পর্ব ২০] ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আলী ইবনুল-আব্বাস আল-মাজুসী:-ধাত্রীবিদ্যা এবং পেরিনেটোলজি এর অগ্রদূত]

[পর্ব ২১]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[ইবনে তোফায়েল:-প্রথম দার্শনিক উপন্যাস রচয়িতা]

[পর্ব ২২]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[আল বালখি:-যিনি সর্বপ্রথম দেহ ও আত্মা সম্পর্কিত রোগসমূহকে সফলভাবে আলোচনা করেছিলেন]

[পর্ব ২৩]ইতিহাসের সেরা কিছু মুসলিম বিজ্ঞানী আর তারা যে কারনে বিখ্যাত।[ছাবেত ইবনে কোরা:-স্টাটিক্সের প্রতিষ্ঠাতা]

30.আবু কামিল(এলজাব্রায় প্রথম উচ্চতর পাওয়ার ব্যবহারকারী)

আবু কামিল ইসলামী স্বর্ণযুগের একজন মিশরীয় গণিতবিদ ছিলেন।তাঁর গাণিতিক কৌশলগুলি পরে ফিবোনাচি গ্রহণ করেছিলেনসুতরাং এইভাবে আবু কামিলকে ইউরোপের বীজগণিত প্রবর্তনের ক্ষেত্রে গুরুত্বপূর্ণ ভূমিকা রাখে।

জীবনী
আবু কামিল ৮৫০ সালে মিসরে জন্মগ্রহণ করেন। তার পূর্ণ নাম আবু কামিল ইবনে আসলাম ইবনে মােহাম্মদ ইবনে শুজা।

ল্যাটিন ভাষায় তার নাম ‘আউকামেল (Auoquamcl)। সংক্ষেপে তিনি আল-হাসিব আল-মিসরি নামে পরিচিত।
হাসিব আল-মিসরি শব্দের আক্ষরিক মানে হলাে “মিসরের গণনাকারী।

আবু কামিলের জীবন সম্পর্কে খুব কমই জানা যায়।আবু কামিল হলেন খাওয়ারিজমির ঠিক পরবর্তী গণিতজ্ঞ বা তার উত্তরাধিকারী। তবে খাওয়ারিজমির সঙ্গে ব্যক্তিগতভাবে তার কখনাে সাক্ষাৎ হয়নি।

গণিতে অবদান

আবু কামিল অঙ্কশাস্ত্র, জ্যামিতি ও বীজগণিতের উপর মৌলিক আলােচনা করেন। জ্যামিতির পঞ্চভুজ ও দশভুজে তার অবদান রয়েছে। ইতােপূর্বে জ্যামিতি ত্রিভুজ পার হয়ে বহু ভুজে এসেছিল। তিনি তাঁর সীমাকে সম্প্রসারিত করে সমস্যার সমাধানের ক্ষেত্র সৃষ্টি করেন। তিনি সাবিত ইবনে কোরার আদর্শ অনুসরণে জ্যামিতির প্রতিপাদ্য ও উপপাদ্যের মীমাংসায় সমীকরণ প্রয়ােগ করেন। বিশেষভাবে সীকরণের সাহায্যে জ্যামিতির সমস্যাগুলাের সমাধান করেন। এভাবে সমীকরণের মধ্যে শক্তি সঞ্চার করে জ্যামিতিক মীমাংসা সম্ভব করাই ছিল তাঁর নিজস্ব অবদান। এজন্যে তাঁকে দশম শতাব্দীর অন্যতম শ্রেষ্ঠ, শুদ্ধ অঙ্কশাস্ত্রবিদ বলা চলে। অঙ্কের এই দুই শাখায় তিনি অনেকগুলাে গ্রন্থ রচনা করেন। অঙ্কের সাঙ্কেতিক নিয়মগুলাে সুশৃঙ্খল এবং ভগ্নাংশের বর্তমান লিখন প্রণালী তারই আবিষ্কার।

তিনি সমাধান হিসাবে অমূলদ সংখ্যা এবং সমীকরণে সহগের প্রথম ধারাবাহিক ব্যবহার করেন। পরবর্তীকালে ইতালীয় জেসুইট যাজক ও গণিতজ্ঞ লিওনার্দো ফিবােনাসি তার গাণিতিক কৌশল গ্রহণ করেন। ফিবােনাসি তার কৌশল গ্রহণ করায় আবু কামিল ইউরােপের সঙ্গে এলজাব্রা বা বীজগণিতকে পরিচিত করে তােলার সুযােগ পান।

আবু কামিল তিনটি অজ্ঞাত মানের সহায়তায় রৈখিক বহির্ভূত বেশ কয়েকটি অবিরত সমীকরণ (Simultaneous equations) সমাধান করেন।

প্রথম উচ্চতর পাওয়ার ব্যবহার

আবু কামিলই প্রথম মুসলিম গণিতজ্ঞ যিনি বীজগণিতে অতি সহজে x2 এর চেয়ে বেশি পাওয়ারের সমীকরণ সমাধানে সক্ষম হন। পাওয়ারগুলাে প্রতীকের পরিবর্তে অক্ষর দিয়ে লিখা হয়। xm xn=xmn ইত্যাদি প্রতীকগুলাে আবু কামিল উপলব্ধি করতে সক্ষম হয়েছিলেন।

উদাহরণস্বরূপ, তিনি x5 বা (x2, x2, x) এর জন্য আরবী শব্দ ‘মাল, মাল শাই’ (বর্গ, বর্গ, মূল), x6 বা (x3,x3) এর জন্য ‘ঘন, ঘন’, x8 বা (x2,x2 x2,x2) এর জন্য ‘বর্গ, বর্গ, বর্গ, বর্গ,’ প্রভৃতি শব্দ ব্যবহার করেছেন।

তার বই পুস্তকে দেখা যাচ্ছে, আবু কামিল x8 পাওয়ার পর্যন্ত কাজ করতে সক্ষম হয়েছিলেন। বীজগণিতে ৬৯টির মধ্যে খাওয়ারিজমি ৪০টি সমস্যার সমাধান দিয়েছিলেন। তবে তার পদ্ধতি ছিল ভিন্নতর।

আবু কামিল একটি বর্গক্ষেত্রের বাহুর মূল বুঝাতে আরবী গাদর (Gadhr) শব্দটি ব্যবহার করেন। বর্গক্ষেত্রের ক্ষেত্রফল বের করতে তিনি স্কোয়ার ইউনিট দিয়ে তাকে গুণ করেন। তার এ পদ্ধতি খাওয়ারিজমির চেয়ে পুরনাে এবং এ পদ্ধতি ১৫০ সালের প্রাচীন হিব্রু “মিশনাত হা মিদুত (Mishnat ha-Middot)-এ দেখা গেছে। আবু কামিল আলেক্সান্ড্রিয়ার হিরন ও ইউক্লিড থেকে প্রচুর ধারণা লাভ করেন। আবুল ওয়াফা তার বই আরবীতে অনুবাদ করার আগে তিনি আরবদের কাছে ছিলেন অপরিচিত।

কিতাব ফি আল-জাবর ওয়াল মুকাবালা

কিতাব ফি আল-জাবর ওয়াল মুকাবালা’ (Book of Algebra) নামে পরিচিত বইটিতে আবু কামিল ভগ্নাংশ লিখন প্রণালীর বর্ণনা দেন। তিনিই প্রথম দ্বিঘাত সমীকরণ সমাধানে দু’টি স্পষ্ট রূপ তুলে ধরেন এবং দ্বিঘাত সমীকরণে সহগ গ্রহণ করেন। তিনি অভিমত প্রকাশ করেন যে, প্রত্যেক দ্বিঘাত সমীকরণের দুটি সমাধান থাকে।

তিনি মূলদ চিহ্নগুলাের যােগ বিয়ােগের নিয়ম পদ্ধতি ব্যাখ্যা করেন। তার পদ্ধতি অনুযায়ী বর্তমান লিখন প্রণালী অনুরূপ:

√a‌‍±√b= √(a+b) ±2√ab

বইটি হলাে আবু কামিলের সবচেয়ে প্রভাবশালী বই। আল-খাওয়ারিজমিকে অতিক্রম করে যেতে তিনি বুক অব এলজাব্রা’ লিখেছিলেন। বীজগণিত সম্পর্কে একটি সাধারণ ধারণা দেয়া ছিল খাওয়ারিজমির লক্ষ্য।

অন্যদিকে আবু কামিল ইউক্লিডের এলিমেন্টস’-এর সঙ্গে পরিচিত অন্যান্য গণিতজ্ঞ বা পাঠকদের জটিলতা দূর করতে ‘বুক অব এলজাব্রা’ লিখেছিলেন। বইটির প্রথম অধ্যায়ে বীজগণিতে জ্যামিতি প্রয়ােগের সমস্যা নিয়ে আলােচনা করা হয়েছে।

এ আলােচনায় কখনাে কখনাে অজ্ঞাত মান এবং বর্গমূল ব্যবহার করা হয়। এ অধ্যায়ে নিয়মিত পঞ্চভুজ ও দশভুজ এবং জ্যামিতির সমস্যা সমাধানে বীজগণিতের সূত্র প্রয়ােগ নিয়ে আলােচনা করা হয়। দ্বিতীয় অধ্যায়ে আল-খাওয়ারিজমির বইয়ে প্রাপ্ত ৬ ধরনের সমস্যা নিয়ে আলােচনা করা হয়।

এসব সমস্যার মধ্যে একটি ছিল x এর পরিবর্তে সরাসরি x এর সমাধান করা। বইটির তৃতীয় অধ্যায়ে সমাধান হিসাবে দ্বিঘাত সমীকরণ এবং সহগ স্থান পায়। চতুর্থ অধ্যায়ে এসব সমাধানকে বহুভুজ সংক্রান্ত সমস্যা সমাধানে ব্যবহার করা হয়।

বইটির বাদবাকি অংশে কয়েক প্রকার অনির্দিষ্ট সমীকরণ এবং বাস্তবসম্মত ও অবাস্তব পরিস্থিতিতে এ ব্যবস্থা প্রয়ােগের সমস্যা নিয়ে আলােচনা করা হয়। আল-ইশতাখরি আল-হাসিব ও আলী ইবনে আহমদ আল-ইমরানিসহ বেশ কয়েকজন মুসলিম গণিতজ্ঞ আবু কামিলের এ বইয়ের ওপর ভাষ্য রচনা করেন। তবে তাদের দু’জনের ভাষ্যই হারিয়ে গেছে। ইউরােপে লিওনার্দো ফিবােনাসির রচনাবলীতে আবু কামিলের বইয়ের অনুরূপ বিষয়বস্তু দেখা গেছে।

সেভিলের জন ‘লাইবার মাহামেলেথ’ (Liber Mahameleth) শিরােনামে ল্যাটিন ভাষায় একটি বই অনুবাদ করেন। বইটিতে আবু কামিলের বইয়ের বেশকিছু অংশ অন্তর্ভুক্ত করা হয়। চতুর্দশ শতাব্দীতে লুনার উইলিয়াম ল্যাটিন ভাষায় বইটি আংশিক অনুবাদ করেন এবং পঞ্চদশ শতাব্দীতে মােরদেকাই ফিঞ্চির হিব্রু অনুবাদে বুক অব এলজাব্রা’ পুরােটা স্থান পায়।

কিতাব আল-তারা ইফ ফিল হিসাব

কিতাব আল-তারা ইফ ফিল হিসাব’ (বুক অব রিয়ার থিংগস দি আর্ট অব ক্যালকুলেশন)-এ অনির্দিষ্ট সমীকরণের অখণ্ড সমাধান খুঁজে বের করার কয়েকটি ধারাবাহিক পদ্ধতির বর্ণনা দেয়া হয়েছে। বইটি হলাে একমাত্র জ্ঞাত আরবী সূত্র যেখানে গ্রীক গণিতজ্ঞ ডায়ােফেন্টাসের ‘এরিথমেটিকা’য় (Arithmetica) বিদ্যমান অনির্দিষ্ট সমীকরণের সমাধান দেখা যায়। আবু কামিল বইটিতে এমন কয়েকটি পদ্ধতি ব্যাখ্যা করেছেন যা এরিথমেটিকা’র বিদ্যমান কোনাে কপিতে দেখা যায়নি।

তিনি একটি সমস্যা বর্ণনা করেছেন এবং এ সমস্যার ২ হাজার ৬৭৮টি সমাধান খুঁজে বের করেছেন। আবু কামিলের এ বইটি তিনটি কারণে গুরুত্বপূর্ণ। প্রথমত, তিনি হলেন প্রথম আরব গণিতজ্ঞ যিনি ডায়ােফেন্টাসের গ্রন্থে প্রাপ্ত অনির্দিষ্ট সমীকরণের সমাধান দিয়েছেন। দ্বিতীয়ত, আরবরা ডায়ােফেন্টাসের এরিথমেটিকা নিয়ে গবেষণা করার আগে আবু কামিল এ বিষয়ের ওপর বই লিখেছেন। তৃতীয়ত, তিনি এমন কয়েকটি পদ্ধতির ব্যাখ্যা দিয়েছেন যেগুলাে ডায়ােফেন্টাসের এরিথমেটিকায় পাওয়া যায়নি।

কিতাব আল-মুখামামাস ওয়াল-মুয়াশশার

কিতাব আল-মুখামামাস ওয়াল-মুয়াশশার (অন দ্য পেন্টাগন এন্ড ডেকাগন)-এ জ্যামিতিক সমস্যা সমাধানে বীজগণিতের পদ্ধতি ব্যবহার করা হয়েছে। আবু কামিল x4+3125=125×2

সমীকরণে ১০ ব্যাসার্ধের একটি বৃত্তে নিয়মিত পঞ্চভুজের একটি বাহুর সংখ্যাসূচক ফল গণনা করেন। কয়েকটি গণনায় গােল্ডেন অনুপাত ব্যবহার করা হয়।

লিওনার্দো ফিবােনাসি বইটি সম্পর্কে জানতে পেরেছিলেন এবং তিনি তার ‘প্র্যাকটিকা জিওমেট্রি’ (Practica geometriae)- তে বইটির নিয়ম ব্যাপকভাবে ব্যবহার করেন।

কিতাব আল-তাইর

কিতাব আল-তাইর’ (Book of Birds) হলাে একটি ক্ষুদ্র পুস্তিকা। বইটিতে ইতিবাচক অখণ্ড সমীকরণের সহায়তায় কিভাবে অনির্দিষ্ট রৈখিক পদ্ধতির সমাধান খুঁজে বের করা যায় তা নিয়ে আলােচনা করা হয়েছে। প্রাচ্যে বিভিন্ন প্রজাতির পাখি ক্রয়ের সমস্যার সঙ্গে বইটির একটি সম্পর্ক রয়েছে। বইটির শিরােনাম এসেছে এসব সমস্যা থেকেই। বইটির সূচনায় আবু কামিল লিখেছেন, ‘I found myself before a problem that I solved and for which I discoverd a great many solutions, looking deeper for its solutions, I obtained two thousand six hundred and seventy six correct ones. My astonishment about that was great, but I found out that when I recounted this discovery, those who did not know me were arrogant, shocked and suspicious of me. I thus decided to write a book on this kind of calculations with the purpose of facilitating its treatment and making it more accessible.”

অর্থাৎ ‘আমি একটি সমস্যার মুখােমুখি হয়ে তার সমাধান করি এবং এ সমস্যা সমাধানে বহু সমাধান খুঁজে পাই। সমস্যার গভীরে তাকিয়ে ২ হাজার ৬৭৬ টি নির্ভুল সমাধান বের করি। এতগুলাে সমাধান খুঁজে পাওয়ায় আমি চরম বিস্মিত হই। কিন্তু আমি যখন সমাধানগুলাের বর্ণনা দিচ্ছিলাম তখন দেখতে পেলাম যারা আমাকে চেনে না তারা আমার প্রতি রুষ্ট, বিরক্ত ও সন্দিহান। আমি তখন এ ধরনের গণনার ওপর একটি বই লিখার সিদ্ধান্ত নেই। সমাধানগুলাে সহজতর ও সহজলভ্য করাই ছিল আমার বই লিখার উদ্দেশ্য।’

কিতাব আল-মিসায়া ওয়াল আল-হান্দাসা

কিতাব আল-মিসায়া ওয়াল আল-হান্দাসা’ (অন দ্য মেজারমেন্ট এন্ড জিওমেট্রি) হলাে ভূমি জরিপকারী এবং অন্য সরকারি কর্মকর্তাদের জন্য গণিত বহির্ভূত একটি সংক্ষিপ্ত জ্যামিতি। আরবীতে জ্যামিতিকে বলা হতাে হান্দাসা’। “কিতাব আল-হান্দাসায় বেশ কয়েকটি নিয়ম দেখা যায়। কয়েকটি নিয়ম বেশ জটিল। আবু কামিল জ্যামিতিক সমস্যার গাণিতিক সমাধান দিয়েছেন। প্রতিটি নিয়মের পাশেই গাণিতিক সমাধান দেয়া হয়েছে। বর্গক্ষেত্র, আয়তক্ষেত্র ও বিভিন্ন ধরনের ত্রিভুজের ক্ষেত্রফল, পরিসীমা ও কর্ণ ইত্যাদি পরিমাপের নিয়ম দেয়া হয়েছে। বইটির শেষাংশে ৩, ৪, ৫, ৬, ৮ এবং ১০টি বাহুর নির্দিষ্ট বহুভুজের বাহুগুলাের পরিমাণ বের করার নিয়ম দেয়া হয়েছে। প্রমাণ ছাড়া বইটিতে পঞ্চভুজ ও দশভুজের যেসব নিয়ম উল্লেখ করা হয় তার বীজগণিত বইয়ে সেগুলো প্রমাণ করা হয়েছে।

সমান্তরাল সমীকরণ

আবু কামিল সমান্তরাল সমীকরণের সমাধান দিয়েছেন। এ সমাধানে তিনি তিনটি অজ্ঞাত মান ব্যবহার করেছেন।
(1) x+y+z=10,

(2) x2+y2= z2,

(3) xy=z2

কামিল ঐচ্ছিকভাবে প্রথমে x (তিনি x = 1 কল্পনা করেন ) এর জন্য x^0 ধরে নেন।

পরবর্তী y ও z এর জন্য যথাক্রমে y0 এবং z0 ধরে নিয়ে (2) ও (3) নম্বর সমাধান করেন।

তার মতে, x, y ও z কে যে কোনাে অপরিবর্তনীয় সংখ্যা দিয়ে গুণ করলে 2 ও 3 নম্বর সমাধান করা যাবে।

10/ (x^0+y^0+z^0) কে গুণ করা হলে অঙ্কনের মাধ্যমে (2) ও (3) এবং (1) নম্বর সমীকরণও সমাধান করা সম্ভব।

হারিয়ে যাওয়া রচনাবলী

আবু কামিল ‘কিতাব আল-খাতা আইন (Book of the two eors) নামে পরিচিত ডাবল ফলস পজিশন’-এর ব্যবহার নিয়ে একটি বই লিখেছিলেন। বর্তমানে বইটি হারিয়ে গেছে। ‘কিতাব আল-জাম ওয়াল তাফরিক’ (বুক অব অগমেন্টেশন এন্ড ডিমিনিউশন) শিরােনামে আবু কামিলের আরেকটি বইও নিখোঁজ। ঐতিহাসিক ফ্রাঞ্জ উইপিক ‘লাইবার অগমেন্টি ইট ডিমিনিউশনিসিস’-এর সঙ্গে সম্পর্ক থাকার কথা প্রকাশ করার পর বইটির প্রতি মনােযােগ বৃদ্ধি পায়। কিতাব আল-ওয়াসায়া বিয়াল জাবর ওয়াল-মুকাবালা’য় (বুক অব এস্টেট শিয়ারিং ইউজিং এলজাব্রা) মুসলিম উত্তরাধিকার সংক্রান্ত সমস্যাবলী স্থান পেয়েছিল। এছাড়া এতে সুপরিচিত আইনজ্ঞদের মতামত নিয়ে আলােচনা করা হয়েছিল। এ বইটিও নিখোঁজ তালিকার অন্তর্ভুক্ত।

খাওয়ারিজমি সম্পর্কে অভিমত

খাওয়ারিজমিকে বীজগণিতের জনক হিসাবে যেসব গণিতজ্ঞ স্বীকৃতি দিয়েছিলেন আবু কামিল হলেন তাদের অন্যতম। ইবনে বারজার অপপ্রচারের বিরুদ্ধে তিনি খাওয়ারিজমিকে সমর্থন করেন। ইবনে বারজা দাবি করেছিলেন, তার দাদা আবদ আল-হামিদ ইবনে তুর্কি হলেন বীজগণিতের জনক। আবদ আল-হামিদ ছিলেন একজন তুর্কি মুসলমান। তিনি বীজগণিতের ওপর লজিক্যাল নেসেসিটিজ ইন মিক্সজড ইকুয়েশন’ শিরােনামে একটি বই লিখেন। বইটির দ্বিপদ সমীকরণ সংক্রান্ত একটি মাত্র অধ্যায় টিকে রয়েছে। আল-হামিদের এ বইটি খাওয়ারিজমির আল-জাবর-এর খুব কাছাকাছি সময়ে প্রকাশিত হয়। এ কারণে তার নাতি ইবনে বারজা তাকে বীজগণিতের জনক হিসাবে দাবি করছিলেন।

তার দাবি খণ্ডন করে আবু কামিল লিখেছেন, have studied with great attention the writings of the mathematicians, examined their assertions, and scrutinized what they explain in their works: 1 thus observed that the book by Muhammad Ibn Musa al- Khwarizmi known as Algebra’ is superior in the accuracy of its principle and the exatness of its argumentation. It thus behooves us, the community of mathematicians, to recognize his priority and to admit his knowledge and his superiority, as in writing his book on algebra he was an initiator and the discoverer of its principles.

অর্থাৎ ‘আমি গভীর মনােযােগের সঙ্গে গণিতবিদদের রচনাবলী অধ্যয়ন করেছি, তাদের উক্তি পরীক্ষা করেছি এবং তারা তাদের বই পুস্তকে যেসব ব্যাখ্যা দিয়েছেন সেগুলাে যাচাই করেছি। অতঃপর আমি দেখতে পেয়েছি যে, এলজাব্রা নামে পরিচিত মােহাম্মদ ইবনে মুসা আল-খাওয়ারিজমির বইটি তার নীতির বিশুদ্ধতা এবং যুক্তির নির্ভুলতায় শ্রেষ্ঠ। এ বইটি আমাদের গণিতজ্ঞ সমাজকে তার অগ্রাধিকারকে স্বীকৃতি দান এবং তার জ্ঞান ও শ্রেষ্ঠত্বকে মেনে নিতে বাধ্য করছে। এলজাব্রার ওপর এ বইটি লিখায় তিনি ছিলেন একজন উদ্ভাবক এবং এ শাস্ত্রের নীতিমালার আবিষ্কারক।

তিনি বীজগণিতে খাওয়ারিজমির ভূমিকাকে আবিষ্কারকের সঙ্গে তুলনা করে মন্তব্য করেছেন, … the one who was first to succeed in a book of algebra and who pioneered and invented all the principles in it.’ অর্থাৎ তিনি হলেন সেই ব্যক্তি যিনি প্রথম বীজগণিতের ওপর একটি বই লিখেছেন এবং যিনি এ শাস্ত্রের সব নিয়ম নীতির দিকনির্দেশনা দান এবং উদ্ভাবন করেছেন। আরেক জায়গায় তিনি লিখেছেন, ‘I have establised in my second book proof of the authority and precedent in algebra of Muhammad Ibn Musa al-Khwarizmi and I have answered that impetuous man Ibn Barza on his attribution to Abd al-Hamid, whom he said was his grandfather. অর্থাৎ ‘আমি আমার দ্বিতীয় বইয়ে বীজগণিতের ওপর মােহাম্মদ ইবনে মুসা আল- খাওয়ারিজমির প্রাধিকার ও পূর্বগামিতা প্রতিষ্ঠা করেছি এবং ইবনে বারজা তার দাদা আবদ আল-হামিদকে বীজগণিতের স্রষ্টা বলে যে দাবি করেছে আমি তার জবাব দিয়েছি।’

আবু কামিলের প্রথম উক্তি থেকে বুঝা যাচ্ছে, তিনি খাওয়ারিজমি প্রতিষ্ঠিত বীজগণিতের বুনিয়াদ প্রতিষ্ঠায় নিয়ােজিত ছিলেন। বস্তুত তিনি বীজগণিতের উন্নয়নে খাওয়ারিজমি ও আল-কারাজির মধ্যে একটি গুরুত্বপূর্ণ সংযােগ হিসাবে কাজ করছিলেন।

আবু কামিলের অবদানের ঐতিহাসিক স্বীকৃতি

বীজগণিতে অসামান্য অবদান রাখায় আবু কামিল ইতিহাসে স্মরণীয় হয়ে রয়েছেন। অ্যা হিস্টরি অব ম্যাথমেটিক্স’-এর দ্বিতীয় সংস্করণে কার্ল বি. বয়ার লিখেছেন, ‘By the

end of the 9″ century, the Egyptian mathematician Abu Kamil had stated and proved the basic laws and identities of algebra and solved such complicated problems as finding x, y and z such that x+y+z=10, x+y’=z and xz=y.’ অর্থাৎ নবম শতাব্দী নাগাদ মিসরীয় গণিতজ্ঞ আবু কামিল বীজগণিতের মৌলিক নিয়ম নীতি ও পরিচিতির বর্ণনা দেন এবং সেগুলাে প্রমাণ করেন। এছাড়া তিনি x, y ও – এর মান খুঁজে বের করার মতাে জটিল সমস্যার সমাধান করেছেন যেখানে x+y+z=10, x2+y2= z2,xy=z2।

প্রভাব

একাদশ শতাব্দীর বিখ্যাত গণিতজ্ঞ আল-কারখি আবু কামিলের বীজগণিত ব্যবহার করেছিলেন এবং তিনি অনেক জায়গায় তাকে অনুসরণ করেছেন।

আবু কামিলের রচনাবলী আল-কারাজি এবং লিওনার্দো ফিবােনাসির মতাে বহু গণিতকে প্রভাবিত করেছে। পরবর্তীতে ফিবােনাসি তার প্র্যাকটিকা জিওমেট্রিতে তার বীজগণিতের বহু উদাহরণ ও কৌশল নকল করেছেন।

ফিবােনাসির ‘লাইবার আবাসিতে-ও আবু কামিলের বইয়ের নিশ্চিত সহায়তা নেয়া হয়েছে। তবে তিনি তার নাম উল্লেখ করেননি। আবু কামিলের অসাধারণ যােগ্যতার সাক্ষ্য দিতে গিয়ে ডি, ই, স্মিথ তার হিস্টরি অব ম্যাথমেটিক্স’-এর ১৭৭ পৃষ্ঠায় লিখেছেন, ‘No writer of his time showed more genius than he in the treatment of equations and their application to the solution of geometric problems.”

অর্থাৎ সমীকরণ সমাধান এবং জ্যামিতিক সমস্যা সমাধানে সমীকরণের প্রয়ােগে তিনি (আবু কামিল) যে মেধার পরিচয় দিয়েছেন তার সময়ের আর কোনাে গ্রন্থকার তা দিতে পারেননি।’

রচনাবলী

আবু কামিলের উল্লেখযােগ্য রচনাবলীর নাম নিচে দেয়া হলাে:

(১) বুক অব ফচুন

(২) বুক অব দ্য কী টু ফর্টুন

(৩) কিতাব ফি আল-জাবর ওয়াল মুকাবালা (বুক অব এলজাব্রা) (৪) বুক অন সার্ভেয়িং এন্ড জিওমেট্রি

(৫) বুক অব দি এডিকুয়েট

(৬) বুক অন ওমেন্স

(৭) বুক অব দ্য কার্নেল

(৮) বুক অব দ্য টু ইরর্স

(৯) বুক অব অগমেন্টেশন এন্ড ডিমিনিউশন

(১০) কিতাব আল-তারা ইফ ফিল হিসাব

(১১) কিতাব আল-মখামামাস ওয়াল-ময়াশশার

(১২) কিতাব আল-তাইর (বুক অব বার্ডস)

(১৩) কিতাব আল-মিসায়া ওয়াল আল-হান্দাসা

মৃত্যু

আবু কামিল 930 খ্রিস্টাব্দে ইন্তেকাল করেন

Leave a Reply